- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Martin, Daniel E (2)
-
Martin, Daniel E. (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In 2021, Chen proved that the size of any connected component of the Markoff mod$$p$$ graph is divisible by$$p$$ . In combination with the work of Bourgain, Gamburd, and Sarnak, Chenβs result resolves a conjecture of Baragar for all but finitely many primes: the Markoff mod$$p$$ graph is connected. In particular, strong approximation for Markoff triples holds for all but finitely many primes. We provide an alternative proof of Chenβs theorem.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Martin, Daniel E (, Advances in Geometry)Abstract For π an imaginary quadratic ring, we compute a fundamental polyhedron in hyperbolic 3-space for the action of PE2(π), the projective elementary subgroup of PSL2(π). This allows for new, simplified proofs of theorems of Cohn, Nica, Fine, and Frohman. Namely, we obtain a presentation for PE2(π), show that it has infinite index and is its own normalizer in PSL2(π), and split PSL2(π) into a free product with amalgamation that has PE2(π) as one of its factors.more » « less
-
Martin, Daniel E. (, Journal of Number Theory)
-
Martin, Daniel E. (, Open Book Series)null (Ed.)
An official website of the United States government
